首页 | 本学科首页   官方微博 | 高级检索  
     

基于IMB-CNN的薄壁件超声铣削颤振辨识方法
引用本文:吴凤和,李申烨,孙迎兵,郭保苏. 基于IMB-CNN的薄壁件超声铣削颤振辨识方法[J]. 计量学报, 2022, 43(5): 617-623. DOI: 10.3969/j.issn.1000-1158.2022.05.09
作者姓名:吴凤和  李申烨  孙迎兵  郭保苏
作者单位:1.燕山大学机械工程学院,河北 秦皇岛 066004
2.河北省重型智能制造装备技术创新中心,河北 秦皇岛 066004
基金项目:国家重点研发计划(2020YFB1711803);;河北省高等学校科学技术重点项目(ZD2020156);
摘    要:针对薄壁件超声铣削加工时产生的颤振严重影响工件质量,加剧刀具磨损的问题,搭建了颤振图像监测系统,利用卷积神经网络(CNN)进行颤振图像辨识,综合运用趋磁细菌算法(MB)、爬山算法(HC)和禁忌算法(TS)的优点,改进MB算法进行超参数优化,提出了一种基于改进趋磁细菌卷积神经网络(IMB-CNN)的薄壁件超声铣削颤振辨识方法。首先,通过MB算法进行全局搜索,再以最优解为初始点,通过HC算法进行邻域搜索,避免了MB算法在最优解附近的振荡;同时,通过禁忌列表跳过已搜索的节点,减小计算规模,加快计算效率;最后,将获得的最优超参数用于CNN,实现颤振图像的精确辨识。与其他方法相比,该方法实现了97.69%的识别率,判断时间为363ms,能有效地进行颤振监测,且整体性能较优。

关 键 词:计量学  颤振辨识  趋磁细菌算法  卷积神经网络  超声铣削,薄壁件,
收稿时间:2021-01-26

Chatter Identification Method for Ultrasonic Milling of Thin Walled Parts Based on IMB-CNN
WU Feng-he,LI Shen-ye,SUN Ying-bing,GUO Bao-su. Chatter Identification Method for Ultrasonic Milling of Thin Walled Parts Based on IMB-CNN[J]. Acta Metrologica Sinica, 2022, 43(5): 617-623. DOI: 10.3969/j.issn.1000-1158.2022.05.09
Authors:WU Feng-he  LI Shen-ye  SUN Ying-bing  GUO Bao-su
Affiliation:1. Mechanical College, Yanshan University, Qinhuangdao, Hebei 066004, China
2. Heavy Intelligent Manufacturing Equipment Technology Innovation Center of Hebei Province, Qinhuangdao, Hebei 066004, China
Abstract:Chatter in ultrasonic milling of thin-walled parts seriously affects the quality of workpiece and aggravates tool wear, so a chatter image monitoring system was built. Convolutional neural network (CNN) was used to identify chatter images and the advantages of magnetotactic bacteria algorithm (MB), hill climbing algorithm (HC) and tabu search algorithm (TS) were taken synthetically to improve MB algorithm for optimizing the parameters. Therefore, a chatter identification method based on the improved magnetic bacteria convolution neural network (IMB-CNN) for ultrasonic milling of thin-walled parts was proposed. Firstly, the global search was carried out by MB algorithm, and then neighborhood search was carried out by HC algorithm with the optimal solution as the initial point, so as to avoid the oscillation of MB algorithm near the optimal solution. At the same time, the tabu list was used to skip the searched nodes to reduce the calculation scale and speed up the calculation efficiency. Finally, the optimal hyperparameters were applied to the CNN to realize the accurate identification of flutter images. Compared with other methods, this method achieves 97.69% recognition rate, and the judgment time is 363ms. The chatter is identified effectively, and the overall performance is better than other algorithms.
Keywords:metrology,chatter identification,magnetotactic bacteria algorithm  convolutional neural network,ultrasonic milling,thin walled parts,
本文献已被 万方数据 等数据库收录!
点击此处可从《计量学报》浏览原始摘要信息
点击此处可从《计量学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号