首页 | 本学科首页   官方微博 | 高级检索  
     

基于集合经验模态分解-支持向量机的高压共轨系统故障诊断方法
引用本文:李良钰,苏铁熊,马富康,吴小军,徐春龙. 基于集合经验模态分解-支持向量机的高压共轨系统故障诊断方法[J]. 兵工学报, 2022, 43(5): 992-1001. DOI: 10.12382/bgxb.2021.0155
作者姓名:李良钰  苏铁熊  马富康  吴小军  徐春龙
作者单位:(1.中北大学 机电工程学院, 山西 太原 030051; 2.中北大学 能源动力工程学院, 山西 太原 030051;3.中国北方发动机研究所, 天津 300400)
摘    要:柴油机高压共轨系统运行时轨压波动信号波动较大且非线性特征较为明显,使其故障诊断较为困难。针对高压共轨系统轨压信号状态参数难以提取与识别的问题,提出一种基于集合经验模态分解(EEMD)—支持向量机(SVM)的故障诊断方法。通过EEMD将轨压信号分解为一系列固有模态函数,利用过零率曲线确定的特征提取准则提取本征模态函数中的特征值。将提取的特征值输入SVM中进行故障类型的诊断。通过AME Sim软件仿真实验获得轨压信号,对比7种不 同的特征值选择方法,最终选取能量特征值构建特征值向量并进行识别和诊断结果分析,以验证该方法的正确性与准确性。结果表明:所提出的基于EEMD—SVM的高压共轨系统故障诊断方法能够对6种不同的运行状态进行状态识别,平均故障诊断正确率可达96.11%。

关 键 词:高压共轨系统  故障诊断  集合经验模态分解  支持向量机  

Fault Diagnosis Method of High-pressure Common Rail System Based on EEMD-SVM
LI Liangyu,SU Tiexiong,MA Fukang,WU Xiaojun,XU Chunlong. Fault Diagnosis Method of High-pressure Common Rail System Based on EEMD-SVM[J]. Acta Armamentarii, 2022, 43(5): 992-1001. DOI: 10.12382/bgxb.2021.0155
Authors:LI Liangyu  SU Tiexiong  MA Fukang  WU Xiaojun  XU Chunlong
Affiliation:(1.College of Mechatronic Engineering,North University of China,Taiyuan 030051,Shanxi,China;2.School of Energy and Power Engineering,North University of China,Taiyuan 030051,Shanxi,China;3.China North Engine Research Institute,Tianjin 300400,China)
Abstract:When the high-pressure common rail system for diesel engine is running, the rail pressure fluctuation signal fluctuates greatly and has obvious nonlinear characteristics, which makes the fault diagnosis more difficult. For the problem that the state parameters of rail pressure signal in high-pressure common rail system are difficult to extract and identify, a fault diagnosis method based on ensemble empirical mode decomposition (EEMD)-support vector machine (SVM) is proposed. The rail pressure signal is decomposed into a series of eigenmode functions by EEMD, and the eigenvalues in the eigenmode functions are extracted using the feature extraction criterion determined by the zero-crossing rate curve. The extracted eigenvalues are input into SVM for fault type diagnosis. The rail pressure signal is obtained through AMESim software simulation experiment, and seven different eigenvalue selection methods are compared. Finally, the energy eigenvalue is selected to construct the eigenvalue vector for identification, and the diagnosis results are analyzed to verify the correctness and accuracy of the proposed method. The results show that the proposed EEMD-SVM-based fault diagnosis method for high-pressure common rail system can be used to identify six different operating states, with the average fault diagnostic accuracy rate of 96.11%.
Keywords:high-pressurecommonrailsystem   faultdiagnosis   ensembleempiricalmodedecomposition   supportvectormachine
本文献已被 万方数据 等数据库收录!
点击此处可从《兵工学报》浏览原始摘要信息
点击此处可从《兵工学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号