首页 | 本学科首页   官方微博 | 高级检索  
     


Quasistatic and dynamic crushability of polymeric foams in rigid confinement
Authors:Ghatu Subhash  Qunli Liu
Affiliation:aMechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611-6250, USA
Abstract:An approach was developed for investigating the crushability behavior of epoxy-based, low-density structural polymeric foam (initial bulk density 0.81 g/cm3 was used for test illustration) under quasistatic and high strain rate conditions in rigid confinement. Quasistatic crushability tests were conducted in a steel confinement cell using an MTS material testing system and the high strain rate (dynamic) crushability behavior was investigated by placing a foam specimen in a steel confinement tube and then loading the specimen using two different split Hopkinson pressure bar systems, namely, a magnesium bar and steel bar. The dynamic deformation characteristics were obtained using a multi-step incremental loading procedure. It was found that these foams exhibited large uniform inelastic deformation during the confined loading. It is verified that multi-step incremental loading can be used to construct the complete stress–strain response curve for the specimens under both quasistatic and dynamic loading conditions. A phenomenological constitutive model was then applied to parametrically describe the crushability response and to determine the rate sensitivity of the foams. The rate sensitivity of yield stress was found to be around three under rigid confinement.
Keywords:Structural foam   Crushability   Rigid confinement   Incremental loading   High strain rate response
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号