首页 | 本学科首页   官方微博 | 高级检索  
     


Mixed-Metal MOF-Derived Hollow Porous Nanocomposite for Trimodality Imaging Guided Reactive Oxygen Species-Augmented Synergistic Therapy
Authors:Yue Cheng  Cong Wen  Yi-Qing Sun  Hua Yu  Xue-Bo Yin
Affiliation:State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071 China
Abstract:Here an excellent trimodality imaging-guided synergistic photothermal therapy (PTT)/photodynamic therapy (PDT)/chemodynamic therapy (CDT) is proposed. To this end, a mixed-metal Cu/Zn-metal-organic framework (MOF) is first assembled at room temperature on a nano-scale. Interestingly, heating the MOF results in a Cu+/2+-coexisting hollow porous structure. Subsequent heating treatment is used to integrate Mn2+ and MnO2 in the presence of manganese(II) acetylacetonate. The hollow composite achieves efficient loading of a photosensitizer, indocyanine green (ICG). Under laser irradiation, the aggregated ICG achieves photothermal imaging and PTT. Once released in the tumor site, ICG exhibits fluorescence imaging and PDT capacity. Cu+/Mn2+ ions perform Fenton-like reaction with H2O2 to produce cytotoxic •OH for the enhanced CDT. Cu2+/MnO2 scavenge glutathione to improve the reactive oxygen species-based therapy, while the formed Mn2+ ions enable “turn on” magnetic resonance imaging. Significantly, O2 is produced from the catalytic decomposition of endogenous H2O2 to improve ICG-mediated PDT. Moreover, photothermal-induced local hyperthermia accelerates •OH generation to enhance CDT. This synergistic drug-free antitumor strategy realizes high treatment efficacy and low side effects on normal tissues. Thus, this mixed-metal MOF is an efficient strategy to realize hollow structures for multi-function integration to improve therapeutic capacity.
Keywords:hollow structures  metal-organic frameworks  synergistic therapies  trimodality imaging  tumor microenvironment
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号