首页 | 本学科首页   官方微博 | 高级检索  
     


Shape Persistent,Highly Conductive Ionogels from Ionic Liquids Reinforced with Cellulose Nanocrystal Network
Authors:Hansol Lee  Andrew Erwin  Madeline L. Buxton  Minkyu Kim  Alexandr V. Stryutsky  Valery V. Shevchenko  Alexei P. Sokolov  Vladimir V. Tsukruk
Affiliation:1. School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 USA;2. Institute of Macromolecular Chemistry of the National Academy of Sciences of Ukraine, Kharkivske Shosse 48, Kyiv, 02160 Ukraine;3. Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 USA

Department of Chemistry, University of Tennessee, Knoxville, TN, 37996 USA

Abstract:Shape-persistent, conductive ionogels where both mechanical strength and ionic conductivity are enhanced are developed using multiphase materials composed of cellulose nanocrystals and hyperbranched polymeric ionic liquids (PILs) as a mechanically strong supporting network matrix for ionic liquids with an interrupted ion-conducting pathway. The integration of needlelike nanocrystals and PIL promotes the formation of multiple hydrogen bonding and electrostatic ionic interaction capacitance, resulting in the formation of interconnected networks capable of confining a high amount of ionic liquid (≈95 wt%) without losing its self-sustained shape. The resulting nanoporous and robust ionogels possess outstanding mechanical strength with a high compressive elastic modulus (≈5.6 MPa), comparable to that of tough, rubbery materials. Surprisingly, these rigid materials preserve the high ionic conductivity of original ionic liquids (≈7.8 mS cm−1), which are distributed within and supported by the nanocrystal network-like rigid frame. On the one hand, such stable materials possess superior ionic conductivities in comparison to traditional solid electrolytes; on the other hand, the high compression resistance and shape-persistence allow for easy handling in comparison to traditional fluidic electrolytes. The synergistic enhancement in ion transport and solid-like mechanical properties afforded by these ionogel materials make them intriguing candidates for sustainable electrodeless energy storage and harvesting matrices.
Keywords:cellulose nanocrystals  gel electrolytes  hyperbranched ionic polymers  polymeric ionic liquids
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号