首页 | 本学科首页   官方微博 | 高级检索  
     


A Textile-Based Temperature-Tolerant Stretchable Supercapacitor for Wearable Electronics
Authors:Hanchan Lee  Gyusung Jung  Kayeon Keum  Jung Wook Kim  Hyein Jeong  Yong Hui Lee  Dong Sik Kim  Jeong Sook Ha
Affiliation:Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
Abstract:Among the extensive development of wearable electronics, which can be implanted onto bodies or embedded in clothes, textile-based devices have gained significant attention. For daily basis applications, wearable energy storage devices are required to be stable under harsh environmental conditions and different deformational conditions. In this study, a textile-based stretchable supercapacitor with high electrochemical performance, mechanical stability, and temperature tolerance over a wide temperature range is reported. It exhibits high areal capacitances of 28.0, 30.4, and 30.6 mF cm−2 at −30, 25, and 80 °C, respectively, while the capacitance remains stable over three repeated cycles of cooling and heating from −30 to 80 °C. The supercapacitor is stable under stretching up to 50% and 1000 repetitive cycles of stretching. A temperature sensor and an liquid-crystal display are simultaneously driven at temperatures between −20 and 80 °C by the supercapacitors. The supercapacitors are woven into a nylon glove power a micro-light-emitting diode stably regardless of the bending of the index finger. Furthermore, the encapsulated supercapacitors retain the capacitance during being immersed in water for a few days. This study demonstrates the potential application of the fabricated supercapacitor as a wearable energy storage device that works under extreme temperature variations, high humidity, and body movements.
Keywords:stretchable supercapacitors  temperature-tolerant supercapacitors  textile-based supercapacitors  wearable electronics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号