首页 | 本学科首页   官方微博 | 高级检索  
     


Biodegradable Elastic Sponge from Nanofibrous Biphasic Calcium Phosphate Ceramic as an Advanced Material for Regenerative Medicine
Authors:Yonggang Zhang  Jiaping Li  Mohammad Soleimani  Francesca Giacomini  Heiner Friedrich  Roman Truckenmüller  Pamela Habibovic
Affiliation:1. Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER The Netherlands;2. Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER The Netherlands

Department of Complex Tissue Regeneration, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER The Netherlands;3. Laboratory of Physical Chemistry, and Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 5, Eindhoven, 5612 AE The Netherlands

Institute for Complex Molecular Systems, Eindhoven University of Technology, Groene Loper 5, Eindhoven, 5612 AE The Netherlands;4. Laboratory of Physical Chemistry, and Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 5, Eindhoven, 5612 AE The Netherlands

Abstract:Biodegradable porous calcium phosphate (CaP) ceramics are widely used as synthetic graft substitutes for bone regeneration, owing to their chemical and structural similarity to bone and associated bioactivity in terms of bone-bonding, osteoconductive, and even osteoinductive properties. Nevertheless, the intrinsic brittleness and poor processability of porous CaP ceramics strongly impair their clinical applicability. Herein, a biphasic calcium phosphate (BCP) sponge is developed that consists of a self-supporting network of seamlessly interwoven hydroxyapatite nanowires and β-tricalcium phosphate nanofibers and possesses a highly interconnected porous structure with open cell geometry and ultrahigh porosity. Owing to its unique properties, the ceramic sponge can be easily processed into various shapes and dimensions, such as cylindrical scaffolds and thin, flexible membranes. Moreover, the BCP sponge can be introduced into a bone defect in a compacted or folded state from a syringe and, upon wetting, expand to its original shape, thereby filling the cavity. The nanofibrous sponge gradually degrades in vitro and rapidly mineralizes when immersed in simulated body fluid. Moreover, it adsorbs significantly more proteins than a conventional porous BCP ceramic. Finally, the nanofibrous sponge supports the attachment, proliferation, and osteogenic differentiation of human mesenchymal stromal cells comparable to the conventional porous BCP ceramic.
Keywords:calcium phosphate  elasticity  nanofibers  processability  shape memory
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号