首页 | 本学科首页   官方微博 | 高级检索  
     


Nanostructured Metal Sulfides: Classification,Modification Strategy,and Solar-Driven CO2 Reduction Application
Authors:Jingjing Wang  Sen Lin  Na Tian  Tianyi Ma  Yihe Zhang  Hongwei Huang
Affiliation:1. Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083 China;2. Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria, 3122 Australia
Abstract:Solar-driven conversion of CO2 into high value-added fuels is expected to be an environmental-friendly and sustainable approach for relieving the greenhouse gas effect and countering energy crisis. Metal sulfide semiconductors with wide photoresponsive range and favorable band structures are suitable photocatalysts for CO2 photoreduction. This review summarizes the recent progress on metal sulfide semiconductors for photocatalytic CO2 reduction. First, the fundamentals, mechanisms and some principles, like product selectivity, of photocatalytic CO2 reduction are introduced. Then, according to the elemental composition, the metal sulfide photocatalysts applied for CO2 reduction are classified into binary (CdS, ZnS, MoS2, SnS2, Bi2S3, In2S3,Cu2S, NiS/NiS2, and CoS2), ternary (ZnIn2S4, CdIn2S4, CuInS2, Cu3SnS4, and CuGaS2), and quaternary (Cu2ZnSnS4) systems, in which their crystal structures, photochemical characteristics, and photocatalytic CO2 reduction applications are systematically demonstrated. Especially, the diverse modification strategies for improving the activity and product selectivity of photocatalytic CO2 reduction on these metal sulfides are summarized. Finally, the current challenges and future directions for the development of metal sulfide photocatalysts for CO2 reduction are proposed. This review is expected to serve as a powerful reference for exploiting high-efficiency metal sulfide photocatalysts for CO2 conversion and furthering related mechanism understanding.
Keywords:charge separation  metal sulfides  photoabsorption  photocatalytic CO 2 reduction  reactive sites
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号