首页 | 本学科首页   官方微博 | 高级检索  
     


Development of Fluorine-Free Tantalum Carbide MXene Hybrid Structure as a Biocompatible Material for Supercapacitor Electrodes
Authors:Alireza Rafieerad  Ahmad Amiri  Glen Lester Sequiera  Weiang Yan  Yijun Chen  Andreas A Polycarpou  Sanjiv Dhingra
Affiliation:1. Regenerative Medicine Program, Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 0G1 Canada;2. J. Mike Walker '66 Mechanical Engineering Department, Texas A&M University, College Station, TX, 77843 USA;3. Department of Aerospace Engineering, Texas A&M University, College Station, TX, 77843 USA
Abstract:The application of nontoxic 2D transition-metal carbides (MXenes) has recently gained ground in bioelectronics. In group-4 transition metals, tantalum possesses enhanced biological and physical properties compared to other MXene counterparts. However, the application of tantalum carbide for bioelectrodes has not yet been explored. Here, fluorine-free exfoliation and functionalization of tantalum carbide MAX-phase to synthesize a novel Ta4C3Tx MXene-tantalum oxide (TTO) hybrid structure through an innovative, facile, and inexpensive protocol is demonstrated. Additionally, the application of TTO composite as an efficient biocompatible material for supercapacitor electrodes is reported. The TTO electrode displays long-term stability over 10 000 cycles with capacitance retention of over 90% and volumetric capacitance of 447 F cm−3 (194 F g−1) at 1 mV s−1. Furthermore, TTO shows excellent biocompatibility with human-induced pluripotent stem cells-derived cardiomyocytes, neural progenitor cells, fibroblasts, and mesenchymal stem cells. More importantly, the electrochemical data show that TTO outperforms most of the previously reported biomaterials-based supercapacitors in terms of gravimetric/volumetric energy and power densities. Therefore, TTO hybrid structure may open a gateway as a bioelectrode material with high energy-storage performance for size-sensitive applications.
Keywords:biocompatible electrode  fluorine-free Ta 4C 3T x MXene  human stem cells  hybrid structures  supercapacitors  Ta 4C 3T x MXene-tantalum oxide
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号