首页 | 本学科首页   官方微博 | 高级检索  
     


Image covariance-based subspace method for face recognition
Authors:Chunghoon Kim [Author Vitae]  Chong-Ho Choi [Author Vitae]
Affiliation:School of Electrical Engineering and Computer Science, Seoul National University, #047, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-744, Korea
Abstract:This paper proposes a new subspace method that is based on image covariance obtained from windowed features of images. A windowed input feature consists of a number of pixels, and the dimension of input space is determined by the number of windowed features. Each element of an image covariance matrix can be obtained from the inner product of two windowed features. The 2D-PCA and 2D-LDA methods are then obtained from principal component analysis and linear discriminant analysis, respectively, using the image covariance matrix. In the case of 2D-LDA, there is no need for PCA preprocessing and the dimension of subspace can be greater than the number of classes because the within-class and between-class image covariance matrices have full ranks. Comparative experiments are performed using the FERET, CMU, and ORL databases of facial images. The experimental results show that the proposed 2D-LDA provides the best recognition rate among several subspace methods in all of the tests.
Keywords:Face recognition   Subspace method   Image covariance matrix   Windowed feature   Principal component analysis   Linear discriminant analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号