首页 | 本学科首页   官方微博 | 高级检索  
     


Linear-complexity algorithms for QoS support in input-queuedswitches with no speedup
Authors:Kam  AC Kai-Yeung Siu
Affiliation:d'Arbeloff Lab. for Inf. Syst. & Technol., MIT, Cambridge, MA;
Abstract:We present several fast, practical linear-complexity scheduling algorithms that enable provision of various quality-of-service (QoS) guarantees in an input-queued switch with no speedup. Specifically, our algorithms provide per-virtual-circuit transmission rate and cell delay guarantees using a credit-based bandwidth reservation scheme. Our algorithms also provide approximate max-min fair sharing of unreserved switch capacity. The novelties of our algorithms derive from judicious choices of edge weights in a bipartite matching problem. The edge weights are certain functions of the amount and waiting times of queued cells and credits received by a virtual circuit. By using a linear-complexity variation of the well-known stable-marriage matching algorithm, we present theoretical proofs and demonstrate by simulations that the edge weights are bounded. This implies various QoS guarantees or contracts about bandwidth allocations and cell delays. Network management can then provide these contracts to the clients. We present several different algorithms of varied complexity and performance (as measured by the usefulness of each algorithm's contract). While most of this paper is devoted to the study of “soft” guarantees, a few “hard” guarantees can also be proved rigorously for some of our algorithms. As can be expected, the provable guarantees are weaker than the observed performance bounds in simulations. Although our algorithms are designed for switches with no speedup, we also derive upper bounds on the minimal buffer requirement in the output queues necessary to prevent buffer overflow when our algorithms are used in switches with speedup larger than one
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号