首页 | 本学科首页   官方微博 | 高级检索  
     


Pyramid context learning for object detection
Authors:Ding  Pengxin  Zhang  Jianping  Zhou  Huan  Zou  Xiang  Wang  Minghui
Affiliation:1.College of Computer Science, Sichuan University, Chengdu, China
;2.The Second Research Institute of CAAC, Chengdu, China
;
Abstract:

Contextual information in complex scenarios is critical for accurate object detection. Existing state-of-the-art detectors have greatly improved detection performance with the use of contexts around objects. However, these detectors consider the local and global contexts separately, which limits the improvement in detection accuracy. In this paper, we propose a pyramid context learning module (PCL) for object detection, which makes full use of the feature context at different levels. Specifically, two operators, named aggregation and distribution, are designed to assemble and synthesize contextual information at different levels. In addition, a channel context learning operator is also used to capture the channel context. PCL is a universal module, so it can be easily integrated into most of the detection frameworks. To evaluate our PCL, we apply it into some popular detectors, e.g., SSD, Faster R-CNN and RetinaNet, and conduct extensive experiments on PASCAL VOC and MS COCO datasets. Experimental results show that PCL can produce competitive performance gains and significantly improve the baselines.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号