首页 | 本学科首页   官方微博 | 高级检索  
     

结合超分辨率重建的神经网络亚像元定位方法
引用本文:吴柯,牛瑞卿,沈焕峰,凌峰,陈涛. 结合超分辨率重建的神经网络亚像元定位方法[J]. 中国图象图形学报, 2010, 15(11): 1681-1687
作者姓名:吴柯  牛瑞卿  沈焕峰  凌峰  陈涛
作者单位:中国地质大学地球物理与空间信息学院
基金项目:国家自然科学基金项目(40901206);中国博士后科学基金项目(20090451091);中国科学院海洋环流与波动重点实验室基金项目(KLOCAW0906)。
摘    要:遥感影像中普遍存在着混合像元,如何分析和解译混合像元一直是人们研究的热点。亚像元定位方法是将混合像元分解成为亚像元,并赋予不同的端元组分,以提高影像整体分类精度的一种技术。本文在神经网络亚像元定位模型的基础上,结合超分辨率重建理论,提出一种新型的BPMAP模型,在每一个类别的组成分图像与亚像元定位图像之间建立起高、低分辨率的观测模型,采用最大后验估计(MAP)算法对BP神经网络的定位结果进行约束,最终确定混合像元内部各组分合适的空间位置。通过对模拟的简单图像和长江三峡地区的ETM影像进行实验,结果表明,与神经网络模型相比,本文方法能够更加有效地解决亚像元定位的问题,进一步消除定位过程中产生的误差,提高精度。

关 键 词:混合像元; 超分辨率; BP神经网络模型; 最大后验估计方法; 观测模型
收稿时间:2009-09-24
修稿时间:2010-09-06

Sub-pixel mapping method based on ANN and super-resolution reconstructed model
WU Ke,NIU Ruiqing,SHEN Huanfeng,LING Feng and CHEN Tao. Sub-pixel mapping method based on ANN and super-resolution reconstructed model[J]. Journal of Image and Graphics, 2010, 15(11): 1681-1687
Authors:WU Ke  NIU Ruiqing  SHEN Huanfeng  LING Feng  CHEN Tao
Affiliation:Institute of Geophysics and Geomatics,China University of Geosciences,Wuhan 430074,Institute of Geophysics and Geomatics,China University of Geosciences,Wuhan 430074,School of Resource and Envuronmental Science,Wuhan University,Wuhan 430079,Institute of Geodesy and Geophysics,Chinese Academy of Sciences,Wuhan 430077 and Institute of Geophysics and Geomatics,China University of Geosciences,Wuhan 430074
Abstract:Mixed pixels are always the case in remote sensed images, and how to analysis and explain mixed pixels is of importance in remote sensing applications. Sub-pixel mapping is a technique designed to obtain the spatial distribution of the classes inside the pixels with information of different endmembers to improve the accuracy of the classification. In this paper, a new BPMAP model is introduced by combination of the neural network and super-resolution reconstructed technology. The spatial distribution of the sub-pixel can be determined by establishing of observation model between the high-resolution and the low-resolution images after the neural network mapping; with restricted by Maximum A Posteriori (MAP) algorithm. The proposed model was tested on both simple synthetic image and ETM image in the three Gorges area. Results indicate that this method can mapping sub-pixel efficiently, and better performance was observed compared to that of the original ANN model.
Keywords:mixed pixels   super-resolution   BPNN model   MAP   observation model
本文献已被 万方数据 等数据库收录!
点击此处可从《中国图象图形学报》浏览原始摘要信息
点击此处可从《中国图象图形学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号