首页 | 本学科首页   官方微博 | 高级检索  
     

基于局部放电监测的变压器故障诊断系统研究
引用本文:邵安海,滕欢. 基于局部放电监测的变压器故障诊断系统研究[J]. 四川电力技术, 2007, 30(6): 39-42
作者姓名:邵安海  滕欢
作者单位:四川大学电气信息学院,四川,成都,610065;四川大学电气信息学院,四川,成都,610065
摘    要:在分析局部放电的监测和故障诊断研究现状的基础上,针对所存在的问题,提出了基于局部放电监测的变压器分层故障诊断系统,该系统充分利用局部放电电声联合检测获得的在线监测数据、油中溶解气体分析结果以及停电试验数据、SCADA数据、设备故障及检修记录等信息,将径向基人工神经网络(RBF)技术与黑板型专家系统结合起来,对故障的类型、性质、危害程度以及定位进行逐步深入的分析,并根据诊断结果提出相应的检修策略。最后根据系统的设计思想给出实现方案。

关 键 词:局部放电  变压器  径向基人工神经网络  黑板型专家系统
文章编号:1003-6954(2007)06-0039-04
收稿时间:2007-09-10
修稿时间:2007-09-10

Study on Transformer Fault Diagnosis System Based on Partial Discharge Monitoring
Shao Anhai,Teng Huan. Study on Transformer Fault Diagnosis System Based on Partial Discharge Monitoring[J]. Sichuan Electric Power Technology, 2007, 30(6): 39-42
Authors:Shao Anhai  Teng Huan
Abstract:Based on the analysis of on - line partial discharge monitoring and fault diagnosis methods for transformer, a distributed fault diagnosis system based on partial discharge monitoring is proposed. It makes the best of the information such as on - line monitoring data, all sorts of electric tests, analysis results of dissolved gas - in - oil, outage test data, SCADA data, operation status and expert experience, and it combines the RBF artificial neural network with blackboard model expert system which makes the deep anal- ysis of the type, properly and harm degree of the fault and provides the overhaul strategy based on diagnosis results. At last the way of realization is described.
Keywords:partial discharge   transformer   RBF neural network   generator blackboard model expert system
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号