首页 | 本学科首页   官方微博 | 高级检索  
     


Fuzzy and Recurrent Neural Network Motion Control among Dynamic Obstacles for Robot Manipulators
Authors:Jean Bosco Mbede  Wu Wei  Qisen Zhang
Affiliation:(1) Intelligent Control and Robotics Laboratory, Department of Control Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, P. R. China;(2) Department of Highway and Bridge Engineering, Changsha Communications University, 410076 Changsha, P. R. China
Abstract:An integration of fuzzy controller and modified Elman neural networks (NN) approximation-based computed-torque controller is proposed for motion control of autonomous manipulators in dynamic and partially known environments containing moving obstacles. The fuzzy controller is based on artificial potential fields using analytic harmonic functions, a navigation technique common used in robot control. The NN controller can deal with unmodeled bounded disturbances and/or unstructured unmodeled dynamics of the robot arm. The NN weights are tuned on-line, with no off-line learning phase required. The stability of the closed-loop system is guaranteed by the Lyapunov theory. The purpose of the controller, which is designed as a neuro-fuzzy controller, is to generate the commands for the servo-systems of the robot so it may choose its way to its goal autonomously, while reacting in real-time to unexpected events. The proposed scheme has been successfully tested. The controller also demonstrates remarkable performance in adaptation to changes in manipulator dynamics. Sensor-based motion control is an essential feature for dealing with model uncertainties and unexpected obstacles in real-time world systems.
Keywords:dynamic obstacle avoidance  fuzzy controller  Lyapunov stability  on-line learning  recurrent neural networks  robot manipulators
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号