首页 | 本学科首页   官方微博 | 高级检索  
     


Fabrication of multilayer systems combining microfluidic andmicrooptical elements for fluorescence detection
Authors:Roulet  J-C Volkel  R Herzig  HP Verpoorte  E de Rooij  NF Dandliker  R
Affiliation:Inst. of Microtechnology, Neuchatel Univ.;
Abstract:This paper presents the fabrication of a microchemical chip for the detection of fluorescence species in microfluidics. The microfluidic network is wet-etched in a Borofloat 33 (Pyrex) glass wafer and sealed by means of a second wafer. Unlike other similar chemical systems, the detection system is realized with the help of microfabrication techniques and directly deposited on both sides of the microchemical chip. The detection system is composed of the combination of refractive microlens arrays and chromium aperture arrays. The microfluidic channels are 60 μm wide and 25 μm deep. The utilization of elliptical microlens arrays to reduce aberration effects and the integration of an intermediate (between the two bonded wafers) aluminum aperture array are also presented. The elliptical microlenses have a major axis of 400 μm and a minor axis of 350 μm. The circular microlens diameters range from 280 to 300 μm. The apertures deposited on the outer chip surfaces are etched in a 3000-Å-thick chromium layer, whereas the intermediate aperture layer is etched in a 1000-Å-thick aluminum layer. The overall thickness of this microchemical system is less than 1.6 mm. The wet-etching process and new bonding procedures are discussed. Moreover, we present the successful detection of a 10-nM Cy5 solution with a signal-to-noise ratio (SNR) of 21 dB by means of this system
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号