首页 | 本学科首页   官方微博 | 高级检索  
     


Mineralization of flumequine in acidic medium by electro-Fenton and photoelectro-Fenton processes
Authors:Garcia-Segura Sergi  Garrido José A  Rodríguez Rosa M  Cabot Pere L  Centellas Francesc  Arias Conchita  Brillas Enric
Affiliation:Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
Abstract:The mineralization of flumequine, an antimicrobial agent belonging to the first generation of synthetic fluoroquinolones which is detected in natural waters, has been studied by electrochemical advanced oxidation processes (EAOPs) like electro-Fenton (EF) and photoelectro-Fenton (PEF) with UVA light. The experiments were performed in a cell containing a boron-doped diamond (BDD) anode and an air-diffusion cathode to generate H2O2 at constant current. The Fe2+ ion added to the medium increased the solubility of the drug by the formation of a complex of intense orange colour and also reacted with electrogenerated H2O2 to form hydroxyl radical from Fenton reaction. Oxidant hydroxyl radicals at the BDD surface were produced from water oxidation. A partial mineralization of flumequine in a solution near to saturation with optimum 2.0 mM Fe2+ at pH 3.0 was achieved by EF. The PEF process was more powerful, giving an almost total mineralization with 94-96% total organic carbon removal. Increasing current accelerated both treatments, but with decreasing mineralization current efficiency. Comparative treatments using a real wastewater matrix led to similar degradation degrees. The kinetics for flumequine decay always followed a pseudo-first-order reaction and its rate constant, similar for both EAOPs, raised with increasing current. Generated carboxylic acids like malonic, formic, oxalic and oxamic acids were quantified by ion-exclusion HPLC. Fe(III)-oxalate and Fe(III)-oxamate complexes were the most persistent by-products under EF conditions and their quicker photolysis by UVA light explains the higher oxidation power of PEF. The release of inorganic ions such as F, NO3 and in lesser extent NH4+ was followed by ionic chromatography.
Keywords:Flumequine  Electro-Fenton  Mineralization  Photoelectro-Fenton  Oxidation products  Water treatment
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号