首页 | 本学科首页   官方微博 | 高级检索  
     

基于轻量级全连接网络的H.266/VVC分量间预测
引用本文:霍俊彦,王丹妮,马彦卓,万帅,杨付正. 基于轻量级全连接网络的H.266/VVC分量间预测[J]. 通信学报, 2022, 0(2)
作者姓名:霍俊彦  王丹妮  马彦卓  万帅  杨付正
作者单位:西安电子科技大学ISN国家重点实验室;西北工业大学电子信息学院
基金项目:国家自然科学基金资助项目(No.62101409,No.62171353)。
摘    要:新一代视频编码标准H.266/VVC引入分量间线性模型(CCLM)预测提高压缩效率。针对亮度色度分量存在相关性却难以建模的问题,提出基于神经网络的分量间预测算法。该算法根据待预测像素与参考像素的亮度差遴选出相关性强的参考像素构成参考子集,然后将参考子集送入轻量级全连接网络获得色度预测值。实验结果表明,与H.266/VVC测试模型版本10.0(VTM10.0)相比,所提算法可提高色度预测准确度,在Y、Cb和Cr上可分别节省0.27%、1.54%和1.84%的码率。所提算法具有不同块尺寸和编码参数均可使用统一网络结构的优点。

关 键 词:H.266/VVC  色度帧内预测  分量间预测  神经网络

Efficient cross-component prediction for H.266/VVC based on lightweight fully connected networks
HUO Junyan,WANG Danni,MA Yanzhuo,WAN Shuai,YANG Fuzheng. Efficient cross-component prediction for H.266/VVC based on lightweight fully connected networks[J]. Journal on Communications, 2022, 0(2)
Authors:HUO Junyan  WANG Danni  MA Yanzhuo  WAN Shuai  YANG Fuzheng
Affiliation:(State Key Laboratory of Integrated Services Network,Xidian University,Xi’an 710071,China;School of Electronics and Information,Northwestern Polytechnical University,Xi’an 710072,China)
Abstract:Cross-component linear model(CCLM) prediction in H.266/versatile video coding(VVC) can improve the compression efficiency. There exists high correlation between luma and chroma components while the correlation is difficult to be modeled explicitly. An algorithm for neural network based cross-component prediction(NNCCP) was proposed where reference pixels with high correlation were selected according to the luma difference between the reference pixels and the pixel to be predicted. Based on the high-correlated reference pixels and the luma difference, the predicted chroma was obtained based on lightweight fully connected networks. Experimental results demonstrate that the proposed algorithm can achieve 0.27%, 1.54%, and 1.84% bitrate savings for luma and chroma components, compared with the VVC test model 10.0(VTM10.0). Besides, a unified network can be employed to blocks with different sizes and different quantization parameters.
Keywords:H.266/VVC  chroma intra prediction  cross component prediction  neural network
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号