首页 | 本学科首页   官方微博 | 高级检索  
     


The catalytic oxidation of ammonia: influence of water and sulfur on selectivity to nitrogen over promoted copper oxide/alumina catalysts
Affiliation:1. Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China;2. Guangdong Chengyi Environmental Technology Corp., Shaoguan 512158, China
Abstract:The CuO/Al2O3 system is active for ammonia oxidation to nitrogen and water. The principal by-products are nitrous oxide and nitric oxide. Nitrous oxide levels increase with the addition of various metal oxides to the basic copper oxide/alumina system. Addition of sulfur dioxide to the reaction stream sharply reduces the level of ammonia conversion, but has a beneficial effect on selectivity to nitrogen. Added water vapour has a lesser effect on activity but is equally beneficial in terms of selectivity to nitrogen. The CuO/Al2O3 is also active for the selective catalytic reduction of nitric oxide by ammonia, but this reaction is not effected by sulfur dioxide addition. A mechanism for ammonia oxidation to nitrogen is proposed wherein part of the ammonia fed to the catalyst is converted into nitric oxide. A pool of monoatomic surface nitrogen species of varying oxidation states is established. N2 or N2O are formed depending upon the average oxidation state of this pool. An abundance of labile lattice oxygen species on the catalyst surface leads to overoxidation and to N2O formation. On the other hand, reduced lability of surface lattice oxygen species favours a lower average oxidation state for the monoatomic surface nitrogen pool and leads to N2 formation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号