首页 | 本学科首页   官方微博 | 高级检索  
     

基于记忆去噪卷积自编码器的色织物缺陷检测
作者姓名:张宏伟  张伟伟  熊文博  陆帅  陈霞
作者单位:1. 西安工程大学电子信息学院;2. 浙江大学工业控制技术国家重点实验室;3. 北京理工大学理学院;4. 西安美术学院服装系
基金项目:国家自然科学基金(61803292);;陕西省教育厅专项科研计划项目(17JK0577);;陕西省重点研发计划(2019SF-235);
摘    要:针对传统自编码器泛化能力弱导致色织物缺陷检测性能不佳的问题,提出一种记忆去噪卷积自编码器重构模型和残差分析的无监督色织物缺陷检测与定位方法。首先,训练阶段仅利用无缺陷样本叠加椒盐噪声构建训练集。接着,建立记忆去噪卷积自编码器重构模型。然后,将训练集输入模型进行训练,使模型具有重构修复缺陷区域的能力。最后,在检测阶段计算待测色织物图像和其对应的重构图像之间的残差,并对残差图像进行阈值分割和闭运算操作,实现色织物缺陷区域的检测和定位。实验结果表明,提出的方法能有效重构色织物纹理,快速准确地检测和定位多种色织物的缺陷区域。该方法无需缺陷样本和缺陷样本标记,仅通过记忆无缺陷样本特征来增强模型重构修复缺陷区域的能力,从而提高缺陷检测性能。

关 键 词:织物缺陷检测  色织物  无监督学习  自编码器  异常检测
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号