首页 | 本学科首页   官方微博 | 高级检索  
     


Separation of thermal and autogenous deformation at varying temperatures using optical fiber sensors
Affiliation:1. Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf, Switzerland;2. Lodz University of Technology, Department of Building Physics and Building Materials, Lodz, Poland;3. Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, Villigen, Switzerland;4. Purdue University, School of Civil Engineering, West Lafayette, USA;5. ETH Zurich, Institute for Building Materials (IfB), Zurich, Switzerland;1. Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland;2. Department of Building Physics and Building Materials, Lodz University of Technology, Poland;3. Institute for Building Materials (IfB), ETH Zürich, Switzerland
Abstract:Common, high and ultra high performance concretes undergo autogenous deformation (AD) when hardening. Deformations are often measured in specimens cured in so-called autogenous conditions, where fully coupled thermal deformation (TD) and AD are the only deformations. Therefore, in autogenous conditions, a decoupling technique must be used to separate the contributions of TD and AD. This paper presents a new technique using optical fiber sensors in specimens that are cured at varying temperatures and in autogenous conditions. Degree of reaction indexes (DRI), sometimes called maturity and equivalent time, are employed to separate TD and AD. The paper begins with a summary of the application of DRI to decoupling techniques, with particular focus on theoretical limits and potential for deformation separation. Current practices related to decoupling and modeling of the thermal and autogenous deformation are evaluated through comparison with experiments. Results confirm that testing improves the accuracy of estimation of values for the thermal expansion coefficient (TEC). Moreover, since AD swelling is detected for all tests, models that include the assumption that AD is exclusively shrinkage are not appropriate for describing AD at varying temperatures.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号