首页 | 本学科首页   官方微博 | 高级检索  
     


Kinetic Resolution of α‐Bromoamides: Experimental and Theoretical Investigation of Highly Enantioselective Reactions Catalyzed by Haloalkane Dehalogenases
Authors:Alja Westerbeek  Wiktor Szyma&#x;ski  Hein J Wijma  Siewert J Marrink  Ben L Feringa  Dick B Janssen
Abstract:Haloalkane dehalogenases from five sources were heterologously expressed in Escherichia coli, isolated, and tested for their ability to achieve kinetic resolution of racemic α‐bromoamides, which are important intermediates used in the preparation of bioactive compounds. To explore the substrate scope, fourteen α‐bromoamides, with different Cα‐ and N‐substituents, were synthesized. Catalytic activity towards eight substrates was found, and for five of these compounds the conversion proceeded with a high enantioselectivity (E value >200). In all cases, the (R)‐α‐bromoamide is the preferred substrate. Conversions on a preparative scale with a catalytic amount of enzyme (enzyme:substrate ratio less 1:50 w/w) were all completed within 17–46 h and optically pure α‐bromoamides and α‐hydroxyamides were isolated with good yields (31–50%). Substrate docking followed by molecular dynamics simulations indicated that the high enantioselectivity results from differences in the percentage of the time in which the substrate enantiomers are bound favourably for catalysis. For the preferred (R)‐substrates, the angle between the attacking aspartate oxygen atom of the enzyme, the attacked carbon atom of the substrate, and the displaced halogen atom, is more often in the optimal range (>157°) for reactivity. This can explain the observed enantioselectivity of LinB dehalogenase in a kinetic resolution experiment.
Keywords:α  ‐bromoamides  enantioselective biocatalysis  haloalkane dehalogenase  kinetic resolution  molecular dynamics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号