首页 | 本学科首页   官方微博 | 高级检索  
     


Industrially interesting approaches to “low-CO2” cements
Authors:Ellis Gartner
Affiliation:Lafarge Laboratoire Central de Recherche, 95 Rue du Montmurier, St. Quentin Fallavier 38291, France
Abstract:This article discusses the practicality of replacing portland cements with alternative hydraulic cements that could result in lower total CO2 emissions per unit volume of concrete of equivalent performance. Currently, the cement industry is responding rapidly to the perceived societal need for reduced CO2 emissions by increasing the production of blended portland cements using supplementary cementitious materials that are principally derived from industrial by-products, such as blast-furnace slags and coal combustion fly ashes. However, the supplies of such by-products of suitable quality are limited. An alternative solution is to use natural pozzolans, although they must still be activated either by portland cement or lime or by alkali silicates or hydroxides, the production of all of which still involves significant CO2 emissions. Moreover, concretes based on activated pozzolans often require curing at elevated temperatures, which significantly limits their field of application.The most promising alternative cementing systems for general concrete applications at ambient temperatures currently appear to be those based at least in part on calcium sulfates, the availability of which is increasing due to the widespread implementation of sulfur dioxide emission controls. These include calcium sulfoaluminate-belite-ferrite cements of the type developed in China under the generic name “Third Cement Series” (TCS) and other similar systems that make good use of the potential synergies among calcium sulfate, calcium silicate and calcium aluminate hydrates. However, a great deal more research is required to solve significant unresolved processing and reactivity questions and to establish the durability of concretes made from such cements. If we are to use these potentially more CO2-efficient technologies on a large enough scale to have a significant global impact, we will also have to develop the performance data needed to justify changes to construction codes and standards.
Keywords:Cement  Energy  Carbon dioxide  Environment  Sustainable development
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号