首页 | 本学科首页   官方微博 | 高级检索  
     


Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume
Authors:I.G. Richardson
Affiliation:Civil Engineering Materials Unit, School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
Abstract:The purpose of this article is to discuss the applicability of the tobermorite-jennite (T/J) and tobermorite-‘solid-solution’ calcium hydroxide (T/CH) viewpoints for the nanostructure of C-S-H present in real cement pastes. The discussion is facilitated by a consideration of the author's 1992 model, which includes formulations for both structural viewpoints; its relationship to other recent models is outlined. The structural details of the model are clearly illustrated with a number of schematic diagrams. Experimental observations on the nature of C-S-H present in a diverse range of cementitious systems are considered. In some systems, the data can only be accounted for on the T/CH structural viewpoint, whilst in others, both the T/CH and T/J viewpoints could apply. New data from transmission electron microscopy (TEM) are presented. The ‘inner product’ (Ip) C-S-H in relatively large grains of C3S or alite appears to consist of small globular particles, which are ≈4-8 nm in size in pastes hydrated at 20 °C but smaller at elevated temperatures, ≈3-4 nm. Fibrils of ‘outer product’ (Op) C-S-H in C3S or β-C2S pastes appear to consist of aggregations of long thin particles that are about 3 nm in their smallest dimension and of variable length, ranging from a few nanometers to many tens of nanometers. The small size of these particles of C-S-H is likely to result in significant edge effects, which would seem to offer a reasonable explanation for the persistence of Q0(H) species. This would also explain why there is more Q0(H) at elevated temperatures, where the particles seem to be smaller, and apparently less in KOH-activated pastes, where the C-S-H has foil-like morphology. In blended cements, a reduction in the mean Ca/Si ratio of the C-S-H results in a change from fibrillar to a crumpled-foil morphology, which suggests strongly that as the Ca/Si ratio is reduced, a transition occurs from essentially one-dimensional growth of the C-S-H particles to two-dimensional; i.e., long thin particles to foils. Foil-like morphology is associated with T-based structure. The C-S-H present in small fully hydrated alite grains, which has high Ca/Si ratio, contains a less dense product with substantial porosity; its morphology is quite similar to the fine foil-like Op C-S-H that forms in water-activated neat slag pastes, which has a low Ca/Si ratio. It is thus plausible that the C-S-H in small alite grains is essentially T-based (and largely dimeric). Since entirely T-based C-S-H is likely to have different properties to C-S-H consisting largely of J-based structure, it is possible that the C-S-H in small fully reacted grains will have different properties to the C-S-H formed elsewhere in a paste; this could have important implications.
Keywords:Calcium-silicate-hydrate (C-S-H)   Cement paste   Granulated blast-furnace slag   Metakaolin   Silica fume
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号