首页 | 本学科首页   官方微博 | 高级检索  
     


Chemical zoning of calcium aluminoferrite formed during melt crystallization in CaO-SiO2-Al2O3-Fe2O3 pseudoquaternary system
Authors:Koichiro Fukuda  Takahiro Bessho  Hideto Yoshida
Affiliation:a Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
b Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
Abstract:In the CaO-SiO2-Al2O3-Fe2O3 pseudoquaternary system, the solid solutions of Ca2(AlxFe1−x)2O5, with x<0.7 (ferrite), Ca2SiO4 (belite), Ca3Al2O6 (C3A) and Ca12Al14O33 (C12A7), were crystallized out of a complete melt during cooling at 8.3 °C/min. Upon cooling to 1370 °C, both the crystals of ferrite with x=0.41 and belite would start to nucleate from the melt. During further cooling, the x value of the precipitating ferrite would progressively increase and eventually approach 0.7. At ambient temperature, the ferrite crystals had a zonal structure, the x value of which successively increased from the cores toward the rims. The value of 0.45 was confirmed for the cores by EPMA. The chemical formula of the rims was determined to be Ca2.03[Al1.27Fe0.68Si0.02]Σ1.97O5 (x=0.65). As the crystallization of ferrite and belite proceeded, the coexisting melt would become progressively enriched in the aluminate components. After the termination of the ferrite crystallization, the C3A and belite would immediately crystallize out of the melt, followed by the nucleation of C12A7. The C12A7 accommodated about 2.1 mass% Fe2O3 in the chemical formula Ca12.03[Al13.61Fe0.37]Σ13.98O33, being free from the other foreign oxides (SiO2 and P2O5).
Keywords:Calcium aluminoferrite   Ca3Al2O6   Ca2SiO4   Ca12Al14O33   Microstructure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号