首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of flue gas desulphurization sludge on the pozzolanic reaction of reject-fly-ash-blended cement pastes
Authors:CS Poon  XC Qiao
Affiliation:a Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
b Institute of Materials, Wuhan University of Technology, Wuhan, China
Abstract:Reject fly ash (rFA), a coarse portion of the pulverized fuel ash (PFA) produced from coal-fired power plants and rejected from the ash classifying process, has remained unused due to its high carbon content and large particle size (>45 μm). However, the reject ash may have potential uses in chemical stabilization/solidification (S/S) processes that require relatively low strength and low chemical reactivity. Flue gas desulphurization (FGD) sludge is a by-product of the air pollution control process in coal-fired power plants. Its chemical composition is mainly gypsum. As there is no effective usage of both of these materials, it was of interest to conduct research on the possible activation of rFA using FGD. This paper presents experimental results of the effect of FGD on the pozzolanic reaction of rFA-blended cement pastes with or without Ca(OH)2 and chemical activators. The results show that FGD take effect as an activator only at late curing ages. Adding Ca(OH)2 activates the hydration of rFA. Chemical activator, such as alkali sulphate, is more effective in enhancing the strength development and degree of hydration of rFA than CaCl2 in the rFA-Ca(OH)2-cement system. But CaCl2 is more effective in the rFA-Ca(OH)2-FGD-cement system. The chemical activators speed up the reaction of the rFA through the formation new hydration products and elevating the pH value.
Keywords:Reject fly ash  Compressive strength  Hydration  Flue gas desulphurization sludge  FGD  Acceleration
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号