首页 | 本学科首页   官方微博 | 高级检索  
     


Updated neutronics analyses of a water cooled ceramic breeder blanket for the CFETR
Authors:Xiaokang ZHANG  Songlin LIU  Xia LI  Qingjun ZHU  Jia LI
Affiliation:1. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China;University of Science and Technology of China, Hefei 230027, People's Republic of China;2. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China;3. University of Science and Technology of China, Hefei 230027, People's Republic of China
Abstract:The water cooled ceramic breeder (WCCB) blanket employing pressurized water as a coolant is one of the breeding blanket candidates for the China Fusion Engineering Test Reactor (CFETR).Some updating of neutronics analyses was needed,because there were changes in the neutronics performance of the blanket as several significant modifications and improvements have been adopted for the WCCB blanket,including the optimization of radial build-up and customized structure for each blanket module.A 22.5 degree toroidal symmetrical torus sector 3D neutronics model containing the updated design of the WCCB blanket modules was developed for the neutronics analyses.The tritium breeding capability,nuclear heating power,radiation damage,and decay heat were calculated by the MCNP and FISPACT code.The results show that the packing factor and 6Li enrichment of the breeder should both be no less than 0.8 to ensure tritium self-sufficiency.The nuclear heating power of the blanket under 200 MW fusion power reaches 201.23 MW.The displacement per atom per full power year (FPY) of the plasma-facing component and first wall reach 0.90 and 2.60,respectively.The peak H production rate reaches 150.79 appm/FPY and the peak He production reaches 29.09 appm/FPY in blanket module # 3.The total decay heat of the blanket modules is 2.64 MW at 1 s after shutdown and the average decay heat density can reach 11.09 kW m-3 at that time.The decay heat density of the blanket modules slowly decreases to lower than 10 W m-3 in more than ten years.
Keywords:CFETR  WCCB  neutronics analyses
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《等离子体科学和技术》浏览原始摘要信息
点击此处可从《等离子体科学和技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号