首页 | 本学科首页   官方微博 | 高级检索  
     


Nonlinear and hysteretic influence of piezoelectric actuators in AFMs on lateral dimension measurement
Affiliation:1. Research School of High-Energy Physics, National Research Tomsk Polytechnic University, Tomsk 634050, Russia;2. School of Nuclear Science and Engineering, National Research Tomsk Polytechnic University, Tomsk 634050, Russia;3. Department of Physical Metallurgy and Materials Technology, Brandenburg Technical University, 03046 Cottbus, Germany
Abstract:Piezoelectric actuators that are used in atomic force microscopes (AFM) have undesirable properties. The nonlinear and hysteretic characteristics of piezoelectric actuators introduce geometric deformations in the reconstructed AFM images. Due to these deformations, the quantitative interpretation of the absolute dimensions of surface features is difficult and often not accurate.A real-time measuring ‘Nano-metrological Atomic Force Microscope’ system equipped with an ultra-high resolution three-axis laser interferometer system is developed, in which the undesirable properties of piezoelectric actuators are compensated completely. Using this AFM and a one-dimensional (1D) grating reference standard with pitches of 240 nm, which is one of the widely used reference standards as nano-metrological lateral scales, the influences of nonlinear and hysteretic characteristics of piezoelectric actuators on image reconstruction and lateral dimension measurement are examined and compared quantitatively among three different measurement methods. The three measurement methods are: (1) the relative movement between probe tip and sample is controlled and measured directly by voltage signals applied on the XYZ scanner, the nonlinear and hysteretic characteristics of piezoelectric actuators are not compensated; (2) the relative movement between probe tip and sample is controlled by voltage signals applied on the XYZ scanner, but it is measured accurately by interferometers; (3) the relative movement between probe tip and sample in lateral directions are both controlled and measured accurately by interferometers. According to the comparison results, an accurate displacement control system is key to reduce the influences of undesirable properties of piezoelectric actuators and the developed AFM system with three-axis laser interferometer system is proved to eliminate the nonlinear and hysteretic characteristics of piezoelectric actuators completely.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号