首页 | 本学科首页   官方微博 | 高级检索  
     


Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery
Authors:Park Young Jun  Park Jung-Woo  Jun Chul-Ho
Affiliation:Department of Chemistry and Center for Bioactive Molecular Hybrid, Yonsei University, Seoul 120-749.
Abstract:The development of an efficient catalytic activation (cleavage) system for C-H and C-C bonds is an important challenge in organic synthesis, because these bonds comprise a variety of organic molecules such as natural products, petroleum oils, and polymers on the earth. Among many elegant approaches utilizing transition metals to activate C-H and C-C bonds facilely, chelation-assisted protocols based on the coordinating ability of an organic moiety have attracted great attention, though they have often suffered from the need for an intact coordinating group in a substrate. In this Account, we describe our entire efforts to activate C-H or C-C bonds adjacent to carbonyl groups by employing a new concept of metal-organic cooperative catalysis (MOCC), which enables the temporal installation of a 2-aminopyridyl group into common aldehydes or ketones in a catalytic way. Consequently, a series of new catalytic reactions such as alcohol hydroacylation, oxo-ester synthesis, C-C triple bond cleavage, hydrative dimerization of alkynes, and skeletal rearrangements of cyclic ketones was realized through MOCC. In particular, in the quest for an optimized MOCC system composed of a Wilkinson's catalyst (Ph 3P) 3RhCl and an organic catalyst (2-amino-3-picoline), surprising efficiency enhancements could be achieved when benzoic acid and aniline were introduced as promoters for the aldimine formation process. Furthermore, a notable accomplishment of C-C bond activation has been made using 2-amino-3-picoline as a temporary chelating auxiliary in the reactions of unstrained ketones with various terminal olefins and Wilkinson's catalyst. In the case of seven-membered cyclic ketones, an interesting ring contraction to five- or six-membered ones takes place through skeletal rearrangements initiated by the C-C bond activation of MOCC. On the other hand, the fundamental advances of these catalytic systems into recyclable processes could be achieved by immobilizing both metal and organic components using a hydrogen-bonded self-assembled system as a catalyst support. This catalyst-recovery system provides a homogeneous phase at high temperature during the reaction and a heterogeneous phase at room temperature after the reaction. The product could be separated conveniently from the self-assembly support system by decanting the upper layer. The immobilized catalysts of both 2-aminopyridine and rhodium metal species sustained high catalytic activity for up to the eight catalytic reactions. In conclusion, the successful incorporation of an organocatalytic cycle into a transition metal catalyzed reaction led us to find MOCC for C-H and C-C bond activation. In addition, the hydrogen-bonded self-assembled support has been developed for an efficient and effective recovery system of homogeneous catalysts and could be successful in immobilizing both metal and organic catalysts.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号