首页 | 本学科首页   官方微博 | 高级检索  
     


Natural convection coupled to surface radiation in an air-filled square cavity containing two heat-generating bodies
Authors:Rachid Hidki  Lahcen El Moutaouakil  Mohammed Boukendil  Zouhair Charqui  Zaki Zrikem  Abdelhalim Abdelbaki
Affiliation:Fluid Mechanics and Energetic Laboratory, Cadi Ayyad University, Faculty of Sciences Semlalia, Marrakesh, Morocco
Abstract:The present numerical study focuses on the cooling by natural convection and surface radiation of two electronic components generating two different and uniform volumetric powers. These components are modeled by two square bodies placed inside a closed square cavity with a cold straight wall. Two configurations are analyzed based on the position of the two heat-generating bodies. In the first one (horizontal position configuration), the two bodies are located at the same height of the cavity, while they are placed at different heights in the second case (vertical position configuration). The effects of two Rayleigh numbers ( 0 ( Ra 1 , Ra 2 ) 10 6 $0\le ({{Ra}}_{1},{{Ra}}_{2})\le {10}^{6}$ ), the conductivity ratio ( 0.01 K 100 $0.01\le K\le 100$ ), and the emissivity ( 0 ε 1 $0\le \varepsilon \le 1$ ) on the heat transfer characteristics and the flow structure are analyzed. The data is displayed as streamlines, isotherms, velocity, and maximum temperature profiles, and local heat transfer on the active wall. The obtained results indicate that the choice of the appropriate configuration depends mainly on the deviation between the two Rayleigh numbers. Furthermore, the maximum temperature of a specific block decreases as the quantity of heat generated by the other block rises. We can also see that the maximum temperature of the two blocks decreases by about 50 % $50 \% $ with the increase in the emissivity (from 0 $0$ to 1 $1$ ) or the conductivity ratio (from 0.1 $0.1$ to 1 $1$ ).
Keywords:coupled heat transfer  electronic components  heat-generating blocks  maximum temperature  natural convection  numerical simulation  surface radiation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号