Abstract: | This paper proposes a novel deep reinforcement learning (DRL) control strategy for an integrated ofshore wind and photovoltaic (PV) power system for improving power generation efciency while simultaneously damping oscillations. A variable-speed ofshore wind turbine (OWT) with electrical torque control is used in the integrated ofshore power system whose dynamic models are detailed. By considering the control system as a partially-observable Markov decision process, an actor-critic architecture model-free DRL algorithm, namely, deep deterministic policy gradient, is adopted and implemented to explore and learn the optimal multi-objective control policy. The potential and efectiveness of the integrated power system are evaluated. The results imply that an OWT can respond quickly to sudden changes of the infow wind conditions to maximize total power generation. Signifcant oscillations in the overall power output can also be well suppressed by regulating the generator torque, which further indicates that complementary operation of ofshore wind and PV power can be achieved. |