首页 | 本学科首页   官方微博 | 高级检索  
     

基于YOLOv3的嵌入式实时视频目标检测算法
引用本文:尹彦卿,龚华军,王新华. 基于YOLOv3的嵌入式实时视频目标检测算法[J]. 计算机工程, 2020, 46(2): 230-234
作者姓名:尹彦卿  龚华军  王新华
作者单位:南京航空航天大学自动化学院,南京210000;南京航空航天大学自动化学院,南京210000;南京航空航天大学自动化学院,南京210000
摘    要:深度神经网络在目标检测领域具有优异的检测性能,但其结构复杂、计算量大,难以在嵌入式设备上进行高性能的实时目标检测。针对该问题,提出一种基于YOLOv3的目标检测算法。采用半精度推理策略提高YOLO算法的推理速度,并通过视频运动自适应推理策略充分利用前后帧视频之间目标的关联性,降低深度学习算法的运行频率,进一步提高目标检测速度。在ILSVRC数据集上的实验结果表明,该算法可以在NVIDIA TX2嵌入式平台上实现28 frame/s的视频目标检测,且检测精度与原始的YOLOv3算法相当。

关 键 词:YOLOv3算法  深度学习  目标检测  NVIDIA  TX2嵌入式平台  半精度  粒子滤波

Embedded Real-time Video Object Detection Algorithm Based on YOLOv3
YIN Yanqing,GONG Huajun,WANG Xinhua. Embedded Real-time Video Object Detection Algorithm Based on YOLOv3[J]. Computer Engineering, 2020, 46(2): 230-234
Authors:YIN Yanqing  GONG Huajun  WANG Xinhua
Affiliation:(College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210000,China)
Abstract:Despite the outstanding performance of deep neural network in object detection,it is hard to implement high-performance real-time object detection on embedded devices due to the complex structure and large amounts of required computation.To address the problem,this paper proposes a YOLOv3-based object detection algorithm.The algorithm uses half precision inference strategy to accelerate the inference of YOLO algorithm.Another inference strategy adaptive to video motions is also adopted to use object correlation between adjacent frames to decrease the running frequency of the deep learning algorithm,and further improve the speed of object detection.Experimental results on the ILSVRC dataset show that the proposed algorithm can implement video object detection on NVIDIA TX2 embedded platforms at a speed of 28 frame/s,and its detection accuracy is close to that of the original YOLOv3.
Keywords:YOLOv3 algorithm  deep learning  object detection  NVIDIA TX2 embedded platform  half precision  particle filter
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号