首页 | 本学科首页   官方微博 | 高级检索  
     

基于高斯混合分布模型的风电功率预测误差统计分析研究
引用本文:张金环1,王超群2,张彤2,周博文3. 基于高斯混合分布模型的风电功率预测误差统计分析研究[J]. 陕西电力, 2020, 0(7): 59-64,72
作者姓名:张金环1  王超群2  张彤2  周博文3
作者单位:(1. 天津职业大学 机电工程与自动化学院,天津 300410; 2. 天津航天长征火箭制造有限公司,天津 300462; 3. 东北大学 信息科学与工程学院,辽宁 沈阳 110819)
摘    要:针对风电功率预测误差的统计分析,研究了一种基于高斯混合模型的风电功率预测误差分布,采用期望最大化算法,从统计学角度分析了风电功率负荷预测误差数据,并且在理论上证明了该方法的合理性。该方法的优点在于,无论其统计分布是怎样的,所有风电功率预测误差的概率密度函数都可以使用高斯混合模型近似表示,然后进行适当的子模型削减。通过对高斯混合模型与其他各种统计分布模型的性能进行比较,证明了高斯混合模型在风电功率预测误差统计分析应用中的有效性。

关 键 词:风电功率预测  高斯混合模型  概率密度估计  期望最大化  预测误差

Statistical Analysis of Wind Power Forecasting Errors Based on Gaussian Mixture Model
ZHANG Jinhuan1,WANG Chaoqun2,ZHANG Tong2,ZHOU Bowen3. Statistical Analysis of Wind Power Forecasting Errors Based on Gaussian Mixture Model[J]. Shanxi Electric Power, 2020, 0(7): 59-64,72
Authors:ZHANG Jinhuan1  WANG Chaoqun2  ZHANG Tong2  ZHOU Bowen3
Affiliation:(1. Department of Electric-Mechanical Engineering & Automation, Tianjin Vocational Institute, Tianjin 300410,China; 2. Tianjin Long March Launch Vehicle Manufacturing Co. Ltd,Tianjin 300462,China; 3. College of Information Science and Engineering,Northeastern University, Shenyang 110819,China)
Abstract:With regard to the statistical analysis of wind power prediction error, a wind power forecasting error distribution based on Gaussian mixture model is studied. The expectation maximization algorithm is used to analyze the wind power load forecasting error data from the statistical point of view,which is theoretically proved. The rationality and advantage of this method is that regardless of its statistical distribution,the probability density function of all wind power forecasting errors can be approximated by using Gaussian mixture model. Then, appropriate sub-model reductions are made. By comparing the performance of Gaussian mixture model with other statistical distribution models, the effectiveness of Gaussian mixture model in the statistical analysis of wind power forecasting error is proved.
Keywords:wind power forecasting  Gaussian mixture model  probability density estimation  expectation maximization  forecasting error
本文献已被 CNKI 等数据库收录!
点击此处可从《陕西电力》浏览原始摘要信息
点击此处可从《陕西电力》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号