首页 | 本学科首页   官方微博 | 高级检索  
     


Electric circuit model for electrical field flow fractionation
Authors:Biernacki Joseph J  Mellacheruvu P Manikya  Mahajan Satish M
Affiliation:Department of Chemical Engineering, Tennessee Technological University, Cookeville, Tennessee 38505, USA. jbiernacki@tntech.edu
Abstract:In electrical field flow fractionation (EFFF or ElFFF), an electric potential is applied across a narrow gap filled with a weak electrolyte fluid. Charge buildup at the two poles (electrodes) and the formation of an electric double layer shields the channel, making the effective field in the bulk fluid very weak. Recent computational research suggests that pulsed field protocols, however, should improve retention and may enhance separation in EFFF through systematic disruptions of the double layer resulting in a stronger effective field in the bulk fluid. Improved retention has already been demonstrated experimentally. Accurate modeling and subsequent device optimization and design, however, depends, in part, on formulating a suitable model for the capacitative response of the channel and double layer at the electrode surfaces. Early models do not correctly describe experimentally observed current-time response and are not physically meaningful even when accurate mathematical fits of the data are realized. A new model and conceptual framework based on electrical resistance and capacitance variations of the double layer is suggested here. Physical interpretations of the electrical response have been developed and compared to published experimental data sets.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号