首页 | 本学科首页   官方微博 | 高级检索  
     


Creep and stress rupture of a mechanically alloyed oxide dispersion and precipitation strengthened nickel-base superalloy
Authors:T E Howson  D A Mervyn  J K Tien
Affiliation:(1) Henry Krumb School of Mines, Columbia University, 10027 New York, NY;(2) Westinghouse Hanford Company, Richland, WA
Abstract:The creep and stress rupture behavior of a mechanically alloyed oxide dispersion strengthened (ODS) and γ′ precipitation strengthened nickel-base alloy (alloy MA 6000E) was studied at intermediate and elevated temperatures. At 760 °C, MA 6000E exhibits the high creep strength characteristic of nickel-base superalloys and at 1093 °C the creep strength is superior to other ODS nickel-base alloys. The stress dependence of the creep rate is very sharp at both test temperatures and the apparent creep activation energy measured around 760 °C is high, much larger in magnitude than the self-diffusion energy. Stress rupture in this large grain size material is transgranular and crystallographic cracking is observed. The rupture ductility is dependent on creep strain rate, but usually is low. These and accompanying microstructural results are discussed with respect to other ODS alloys and superalloys and the creep behavior is rationalized by invoking a recently-developed resisting stress model of creep in materials strengthened by second phase particles. The analysis indicates that at the intermediate temperature the creep strength is controlled by the high volume fraction of γ′ precipitates and the contribution to the creep strength from the oxide dispersion is small. At the elevated temperature, the creep strength is derived mainly from the inert oxide dispersoids. Formerly at Columbia University.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号