首页 | 本学科首页   官方微博 | 高级检索  
     


Pore fabric shape anisotropy in porous sandstones and its relation to elastic wave velocity and permeability anisotropy under hydrostatic pressure
Authors:P.M. Benson   P.G. Meredith   E.S. Platzman  R.E. White
Affiliation:

aDepartment of Earth Sciences, University College London, Gower Street, London WC1E6BT, UK

bSchool of Earth Sciences, Birkbeck College, Malet Street, London WC1E 7HX, UK

Abstract:To understand the relationship between pore space anisotropy and petrophysical properties, we developed a novel apparatus capable of simultaneously measuring permeability, porosity and ultrasonic velocities at hydrostatic pressures up to 100 MPa. First, we use magnetic susceptibilities and acoustic wave velocities to identify the principal anisotropy axes under ambient laboratory conditions. This directional anisotropy data is then used to guide experiments on two sandstones (Bentheim and Crab Orchard) under hydrostatic pressure from 5 to 90 MPa. We find the structural anisotropy formed by the void space is well described by velocity anisotropy in both cases. Under hydrostatic pressure, the acoustic anisotropy of Crab Orchard sandstone (COS) decreases from 3% and 7% at 5 MPa (P-wave and S-wave) to 1.5% and 1%, respectively, at effective pressures over 40 MPa; for Bentheim sandstone the decrease is considerably less. Permeability of COS is 125×10−18 m2, decreasing rapidly as effective pressure increases, with permeability parallel to bedding approximately twice that normal to bedding. In contrast, permeability of Bentheim sandstone is 0.86×10−12 m2, and varies little with effective pressure or coring direction. We relate many of our measurements made under hydrostatic pressure to the contrasting pore fabric between the two rock types, and infer that a critical pressure is required for the initiation of crack closure.
Keywords:Anisotropy of magnetic susceptibility (AMS)   Permeability   Elastic wave velocity   Sandstone
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号