首页 | 本学科首页   官方微博 | 高级检索  
     


Partitioning of drug model compounds between poly(lactic acid)s and supercritical CO2 using quartz crystal microbalance as an in situ detector
Authors:Shao-Ling Ma  Zhi-Bing Zhang
Affiliation:Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
Abstract:Quartz crystal microbalance (QCM) was used as an in situ detector to investigate the potential application in the phase equilibrium determination of supercritical CO2-drug-polymer systems. CO2 solubility in two biodegradable polymers, poly(d,l-lactic acid) (d,l-PLA) and poly(l-lactic acid) (l-PLA) was primarily measured at 313.15 K and pressures up to 10.0 MPa. d,l-PLA showed a better CO2 absorption ability due to its amorphous structure. Four drug model compounds of poor solubility in water, ibuprofen, aspirin, salicylic acid and naphthalene were selected as representatives for the examination of drug uptake in PLA matrices, as well as partition coefficient during supercritical impregnation. It was found that partition coefficients of drugs can reach as high as 103-104 orders of magnitude and greatly affected by the intermolecular interactions between drugs and PLA. Aspirin exhibited the best partitioning during the supercritical impregnation at pressures of 8.0-10.0 MPa due to the existence of carboxylic acid and acetyl groups. Drug partitioning is additionally related to the drug concentration in ScCO2, i.e. salicylic acid showed little absorption in PLA according to its poor solubility in ScCO2 at 7.5-8.0 MPa, whereas the well CO2-soluble compound, naphthalene, exhibited a moderate partition coefficient although its polarity was different from l-PLA.
Keywords:Quartz crystal microbalance  Supercritical carbon dioxide  Impregnation  Polymer  Partition coefficient
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号