首页 | 本学科首页   官方微博 | 高级检索  
     


Strength, durability and micro-structural aspects of high performance volcanic ash concrete
Authors:KMA Hossain  M Lachemi
Affiliation:Department of Civil Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada, M5B 2K3
Abstract:This paper presents the results of investigations to assess the suitability of using volcanic ash (VA) as a cement replacement material to produce high performance concrete. Tests were conducted on concrete mixtures replacing 0 to 20% by mass of ordinary Portland cement (OPC) by VA. The performance of high performance volcanic ash concrete (HPVAC) mixtures was evaluated by conducting comprehensive series of tests on fresh and hardened properties as well as durability. The mechanical properties were assessed by compressive strength, while durability characteristics were investigated by rapid chloride permeability (RCP), drying shrinkage (DS), mercury intrusion porosimetry (MIP), differential scanning calorimetry (DSC) and microhardness tests. HPVACs showed better durability properties compared to control concrete with 0% VA. The improved performance of HPVACs was attributed to the refinement of pore structure, and pozzolanic action of VA. HPVAC having a minimum 28-day compressive strength of 60 MPa can be obtained by replacing up to 20% (by mass) of cement by VA. Development of non-expensive and environmentally friendly HPVAC with acceptable strength and durability characteristics (as illustrated in this study) is extremely helpful for the sustainable development and rehabilitation of volcanic disaster areas around the world.
Keywords:High performance volcanic ash concrete  Compressive strength  Drying shrinkage  Rapid chloride permeability  Porosity and pore structure  Calorimetry
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号