首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical investigation of the flow field and heat transfer characteristics for upstream continuous and truncated ribs
Authors:Zhi-peng Xu  Hui-ren Zhu  Lin Ye
Affiliation:School of Power and Energy, Northwestern Polytechnical University, Xi'an, China
Abstract:To verify the applicability of upstream ribs in film cooling, the present numerical study examines heat transfer characteristics and flow field for ribs located upstream of the film hole. Five ribs including bilaterally truncated ribs, centrally truncated ribs, and continuous ribs are explored with the smooth case at two blowing ratios and fixed crossflow Reynolds number. The results show that the film cooling effectiveness of cases with ribs outperforms the case without rib at a low blowing ratio. Centrally truncated ribs and continuous ribs provide superior cooling effectiveness than bilaterally truncated ribs and smooth cases. The introduction of ribs makes the distribution of the heat transfer coefficient (HTC) uneven after the hole. Among these, centrally truncated ribs increased the HTC, while bilaterally truncated ribs reduce the HTC in the far hole area at a high blowing ratio. It is found that anti-kidney-shaped vortex pairs are generated between two adjacent jets for centrally truncated rib cases, while they are generated in front of the jets for bilaterally truncated rib cases. For continuous rib, the impingement of the mainstream gas on the jet leads to a reduction in strength of the kidney-shaped vortex, which allows the coolant to form a better coverage.
Keywords:blowing ratio  film cooling  heat transfer coefficient  numerical simulation  upstream rib
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号