首页 | 本学科首页   官方微博 | 高级检索  
     


Combined effects of homogeneous and heterogeneous reactions on peristalsis of Ree-Eyring liquid: Application in hemodynamic flow
Authors:Hanumesh Vaidya  Rajashekhar Choudhari  Fateh Mebarek-Oudina  Isaac Lare Animasaun  Kerehalli Vinayaka Prasad  Oluwale Daniel Makinde
Affiliation:1. Department of Mathematics, Vijayanagara Sri Krishnadevaraya University, Ballari, Karnataka, India;2. Department of Mathematics, Karnataka State Akkamahadevi Women's University, Vijayapura, Karnataka, India;3. Department of Physics, Faculty of Sciences, University 20 August 1955, Skikda, Algeria;4. Fluid Dynamics and Survey Research Group, Department of Mathematical Sciences, The Federal University of Technology, Akure, Nigeria;5. Faculty of Military Science, Stellenbosch University, Saldanha, South Africa
Abstract:This research examines the influence of homogeneous and heterogeneous chemical reactions on the peristaltic flow via an inclined permeable channel. The current investigation emphasizes on modeling the flow of blood in narrow arteries by taking convective and wall properties into account. The Ree-Eyring non-Newtonian model is used to govern the fluid flow due to its significance in understanding the behavior of dilatant, pseudoplastic, and viscous liquids. The variation in variable viscosity and thermal conductivity is considered for analyzing the complex rheological behavior of blood. The similarity transformations are used in the process of nondimensionalization. The series solution procedure is adopted to solve the governing nonlinear differential equations. The expressions for velocity, temperature, concentration, and trapped bolus are obtained. The computational results are analyzed with the help of graphs for shear thickening, shear thinning, and Newtonian fluid models. One of the significant findings of the current model is that an introduction of variable liquid properties improves the temperature and velocity profiles for Newtonian and pseudoplastic fluid models. Compared with the other theoretical models developed, the rheological and flow properties of various biological fluids can be derived from the model used in the present investigation.
Keywords:Biot number  partial slip parameter  rigidity parameter  stiffness parameter  wall damping force parameter
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号