Mutual effects of chemical reaction and thermal radiation on MHD peristaltic transport of Jeffrey nanofluids: Tumor tissues treatment |
| |
Authors: | Hanaa A. H. Asfour |
| |
Affiliation: | Department of Basic and Applied Sciences, Thebes Academy, Elmaadi, Egypt |
| |
Abstract: | As thermal radiation is one of the fundamental means of heat transfer, therefore, this study analyzes the impacts of thermal radiation and magnetic field on the peristaltic transport of a Jeffrey nanofluid in a nonuniform asymmetric channel. Further, Two models of viscosity are debated: Model (I), in which all parameters dependent on viscosity behave as a constant (as treated before in nanofluid research); Model (II), in which these known parameters are considered to vary with the temperature of the flow. Under the condition of long wavelength and low Reynolds number, the problem is rearranged. The resulting system of partial differential equations (PNE) is solved with aid of Mathematica 11. Furthermore, the streamline graphs are presented by significance of trapping bolus phenomenon. To emphasize the quality of solutions, comparisons between the previous results and recent published results by Reddy et al. have been made and signified. The comparisons are shown in Table 1 and are found to be in good agreement. As the thermal radiation increases, the diameter of nanoparticles rises (thermal radiation is a diminishing function of temperature, and with a decrease in the temperature, the diameter of the nanoparticles increases, that is, the size of nanoparticles increases and they become more active near malignant tumor tissues). Therefore, its work as agents for radiation remedy, produce limited radiation quantities, and selectively target malignant tumor for controlled mutilation (radiotherapy of oncology). Such a model is appropriate for the transportation of physiological flows in the arteries with heat and mass transfer (blood flow models). |
| |
Keywords: | Jeffrey nanofluid magnetic field peristalsis tapered asymmetric channel temperature-dependent viscosity thermal radiation |
|
|