首页 | 本学科首页   官方微博 | 高级检索  
     


The influence of tablet density on the human oral absorption of sustained release acetaminophen matrix tablets
Abstract:Abstract

Low density bilayer compressed matrix tablets of acetaminophen were tested for in vitro dissolution and in vivo oral absorption. The upper layer contained a carbon dioxide-generating blend and the lower layer contained hydroxypropyl methylcellulose (HPMC) and acetaminophen. Carbon dioxide liberated by the action of the acidic dissolution medium on the upper layer is entrapped in the gelled hydrocolloid, providing buoyancy of the tablet and sustained release of the drug. For comparative purposes, similar but non-gas generating bilayer compressed matrix tablets were formulated and tested in vitro under the same conditions. These high density tablets were found to yield similar dissolution profiles as the low density tablets. The absorption characteristics of the bilayer compressed matrix tablets were compared with those of rapidly disintegrating acetaminophen tablets (TYLENOL® tablets, 500 mg) under fasted and fed conditions in six healthy subjects. Under fasted conditions, saliva profiles showed a rapid absorption for TYLENOL tablets but slower absorption for both compressed matrix tablets. Saliva profiles of TYLENOL® tablets under fed conditions were similar to those for the fasted case. In contrast, the peak saliva levels of acetaminophen for both compressed matrix tablets were significantly increased under fed conditions. The time to maximum saliva concentrations (Tmax) of all three dosage forms was not significantly affected by food intake. The relative bioavailability of the low density tablets under fasted and fed conditions was not significantly different from those of TYLENOL tablets, but vas significantly greater than that of high density tablets under fasted and fed conditions. A possibility exists that the buoyancy mechanism enabled the tablet to maintain more prolonged residence time in the gastrointestinal tract.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号