首页 | 本学科首页   官方微博 | 高级检索  
     


Aqueous film coating to reduce recrystallization of guaifenesin from hot-melt extruded acrylic matrices
Abstract:Objectives: This study investigated the effect of aqueous film coating on the recrystallization of guaifenesin from acrylic, hot-melt extruded matrix tablets. Methods: After hot-melt extrusion, matrix tablets were film-coated with either hypromellose or ethylcellulose. The effects of the coating polymer, curing and storage conditions, polymer weight gain, and core guaifenesin concentration on guaifenesin recrystallization were investigated. Results: The presence of either film coating on the guaifenesin-containing tablets was found to prolong the onset time of drug crystallization. The coating polymer was the most important factor determining the delay in the onset of crystallization, with the more hydrophilic polymer, hypromellose, having a higher solubilization potential for the guaifenesin and delaying crystallization for longer period (3 or 6 months in tablets stored at 40°C or 25°C, respectively) than the more hydrophobic ethylcellulose, which displayed a lower solubilization potential for guaifenesin (crystal growth on tablets cured for 2 hours at 60°C occurred within 3 weeks, whereas uncoated tablets displayed surface crystal growth after 30 minutes). Crystal morphology was also affected by the film coating. Elevated temperatures during both curing and storage, incomplete film coalescence, and high core drug concentrations all contributed to an earlier onset of crystal growth.
Keywords:Acryl-EZE®  curing  diffusion  Eudragit® L100-55  film coating  guaifenesin  hot-melt extrusion  matrix tablets  physical stability  recrystallization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号