首页 | 本学科首页   官方微博 | 高级检索  
     


More studies on the PVOH-LiH2PO4 polymer system
Authors:VH Zapata  WA Castro  B-E Mellander
Affiliation:a Departamento de Física, Universidad del Valle, A.A. 25360 Cali, Colombia
b Physics and Engineering Physics, Chalmers University of Technology, 41296 Göteborg, Sweden
Abstract:Polymer electrolytes based on poly(vinyl alcohol) (PVOH) and lithium dihydrogen-phosphate (LiH2PO4) with molar ratio of x = 0.07, 0.10 and 0.14 were prepared in order to investigate the mechanism of ionic motion. Admittance spectroscopy measurements were used to study electrical conductivity relaxation on both anhydrous and hydrated samples in the 5 Hz to 13 MHz frequency range and temperatures ranging from 25 to 150 °C. The conductance, G, shows dispersion above a crossover frequency, fp. This behavior is typical of systems in which correlated ionic motions in the bulk material are responsible for ionic conductivity. For hydrated samples, results reveal that the temperature dependence of the dc-conductivity, σ0 and the characteristic frequency, fp, shows Arrhenius-type behavior with the same energy, Eσ. However, for anhydrous conductivity, a Vogel-Tamman-Fulcher (VTF) behavior is shown for both σ0(T) and fp(T), with the same pseudo activation energy, B and Bσ, respectively, thus indicating that they are correlated with chain mobility.
Keywords:Poly(vinyl alcohol)  ac conductivity  Power law  Non-Debye relaxation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号