首页 | 本学科首页   官方微博 | 高级检索  
     

冷热循环下纤维混凝土与高强钢筋间粘结强度损伤模型
引用本文:张广泰,李瑞祥,刘诗拓,阿迪力·赛买提,耿天娇. 冷热循环下纤维混凝土与高强钢筋间粘结强度损伤模型[J]. 硅酸盐通报, 2021, 40(4): 1193-1204
作者姓名:张广泰  李瑞祥  刘诗拓  阿迪力·赛买提  耿天娇
作者单位:新疆大学建筑工程学院,乌鲁木齐 830047;新疆建筑结构与抗震重点实验室,乌鲁木齐 830047;新疆大学建筑工程学院,乌鲁木齐 830047
基金项目:国家自然科学基金(51968070)
摘    要:通过对普通混凝土(PC)、钢纤维混凝土(SFRC)、聚丙烯纤维混凝土(PFRC)与HRB500E钢筋进行冷热循环作用后的中心拉拔试验,研究不同类型混凝土的劣化机理,分析冷热循环对PC、SFRC、PFRC的质量损失、相对动弹性模量以及粘结强度的影响.试验结果表明:冷热循环后,混凝土的质量损失和动弹性模量损失增加,钢筋与混...

关 键 词:冷热循环  纤维混凝土  Weibull概率分布  粘结强度  损伤模型
收稿时间:2020-10-21

Bond Strength Damage Model between Fiber Reinforced Concrete and High-Strength Steel Bars under Thermal-Cold Cycles
ZHANG Guangtai,LI Ruixiang,LIU Shituo,SAMAT Adil,GENG Tianjiao. Bond Strength Damage Model between Fiber Reinforced Concrete and High-Strength Steel Bars under Thermal-Cold Cycles[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(4): 1193-1204
Authors:ZHANG Guangtai  LI Ruixiang  LIU Shituo  SAMAT Adil  GENG Tianjiao
Affiliation:1. College of Architecture and Engineering, Xinjiang University, Urumqi 830047, China;2. Key Lab of Building Structure and Earthquake Resistance, Urumqi 830047, China
Abstract:Through the central pull-out test of ordinary concrete (PC), steel fiber reinforced concrete (SFRC), polypropylene fiber reinforced concrete (PFRC) and HRB500E steel bars after thermal-cold cycles, the deterioration mechanism of different types of concrete was studied, and the influences of thermal-cold cycles on mass loss, relative dynamic elastic modulus and bond strength of PC, SFRC and PFRC were analyzed. The results show that the mass loss and dynamic elastic modulus loss of concrete increase, and the bond strength between reinforcement and concrete decreases after thermal-cold cycles. When steel fiber and polypropylene fiber are added into the specimen, the attenuation of bond strength is weakened, and the inhibition effect of polypropylene fiber is more obvious. Combined with the experimental data, the Petersen model, Xu model and Wu model at home and abroad are compared and analyzed. Considering the influences of thermal-coal cycles on the relative dynamic modulus of elasticity and the relative bond strength, based on Weibull probability distribution theory and strength attenuation model, a bond strength degradation model of fiber reinforced concrete and high-strength steel bar is established, which is verified by the data in this paper. The average value of the ratio between measured value and calculated value is 0.97, and the standard deviation is 0.07, which are in good agreement. The model provides a theoretical reference for the durability design of fiber reinforced concrete structures under thermal-cold environment.
Keywords:thermal-cold cycle  fiber reinforced concrete  Weibull probability distribution  bond strength  damage model  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《硅酸盐通报》浏览原始摘要信息
点击此处可从《硅酸盐通报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号