首页 | 本学科首页   官方微博 | 高级检索  
     

特征融合与视觉目标跟踪 *
引用本文:卞志国,金立左,费树岷. 特征融合与视觉目标跟踪 *[J]. 计算机应用研究, 2010, 27(4): 1537-1539. DOI: 10.3969/j.issn.1001-3695.2010.04.094
作者姓名:卞志国  金立左  费树岷
作者单位:东南大学,自动化学院,南京,210096
基金项目:航空科学基金资助项目 ( 20080169003 ) ;国家自然科学基金资助项目 ( 60805002)
摘    要:针对跟踪过程中各类图像特征分离背景和目标能力的变化 ,提出一种基于增量判别分析的特征融合算法。该算法首先计算各特征图像的似然图 ,然后通过增量判别分析计算各特征分类性能 ,得到相应权重 ,并在此基础上求取融合似然图 ,通过粒子滤波算法确定待跟踪目标状态。通过对可见光及红外成像视频序列的仿真表明,该算法对环境光照变化、视角变化以及局部遮挡等均具有一定的鲁棒性。

关 键 词:目标跟踪   增量判别分析   特征融合   粒子滤波

Likelihood map fusion for visual object tracking
BIAN Zhi-guo,JIN Li-zuo,FEI Shu-min. Likelihood map fusion for visual object tracking[J]. Application Research of Computers, 2010, 27(4): 1537-1539. DOI: 10.3969/j.issn.1001-3695.2010.04.094
Authors:BIAN Zhi-guo  JIN Li-zuo  FEI Shu-min
Affiliation:( School of Automation, Southeast University, Nanjing 210096, China)
Abstract:For the ability of every kinds of features to separate the object from backgroud is dynamic during the process of tracking, this paper presented an ILDA based likelihood map fusion. Gave a tracking frame, calculated each likelihood map and obtained the weight of each through ILDA, then fused the likelihood map based on the weights. At last, acquired the state of the objecte through particle filter based on the fused likelihood. Examples based on optical and infrared frames show that the proposed tracking framework is robust to the partial occlusions, view-point and illumination variations.
Keywords:object tracking   incremental LDA   feature fusion   particle filter
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号