首页 | 本学科首页   官方微博 | 高级检索  
     


Fatigue crack growth in thick-walled cylinders under pulsating internal pressure
Authors:D W A Rees
Affiliation:

Department of Manufacturing and Engineering Systems, Brunei University, Uxbridge, Middlesex UB8 3PH, U.K.

Abstract:The stress intensity factor is derived for both single and multiple longitudinal, elliptical cracks in the wall of a pressurized thick cylinder of given geometry. For this purpose, it is found necessary to combine known solutions to the stress intensity factor for a straight longitudinal crack with the effects of a curved crack front and multiple cracking. The analysis is appraised from a number of fatigue tests reported for Image % Ni-Cr-Mo cylinders with diameter ratios of between 2 and 3 under repeated and fluctuating pressure cycles. When cylinders with poorly finished bores are assumed to be initially flawed, it is found that their fatigue lives under high ranges of pressure may be predicted reliably for the single crack propagation failures observed. This analysis employs published WOL or SEN fatigue crack growth data for the alloy. The enhancement in fatigue life that results from an improved surface finish has enabled that proportion of life expended during the initiation phase to be determined. It is further shown that the observed effect of mean stress and surface finish on the fatigue limit may be quantified with a change to the threshold of stress intensity for crack growth. A number of tests were conducted with two-step changes to the amplitude of the pressure cycle. In this instance, nonlinear, stress dependent, cumulative damage rules are shown to offer no advantage over Miner's rule in the prediction of fatigue life.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号