首页 | 本学科首页   官方微博 | 高级检索  
     


Kinetics and mechanism of olefin methylation reactions on zeolites
Authors:Ian M. Hill  Saleh Al Hashimi  Aditya Bhan
Affiliation:1. Engineering Research Center of Large Scale Reactor Engineering and Technology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China;2. UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
Abstract:Ethylene and propylene methylation rates increased linearly with olefin pressure but did not depend on dimethyl ether (DME) pressures on proton-form FER, MFI, MOR, and BEA zeolites at low conversions (<0.2%) and high DME/olefin ratios (30:1) in accordance with a mechanism that involves the zeolite surface being predominantly covered by DME-derived species reacting with olefins. Higher first-order reaction rate constants for both ethylene and propylene methylation were observed over H-BEA and H-MFI compared with H-FER and H-MOR, indicating that olefin methylation reaction cycles involved in the conversion of methanol-to-gasoline over zeolitic acids are propagated to varying extents by different framework materials. Systematically lower activation barriers and higher rate constants were observed for propylene methylation in comparison with ethylene methylation over all frameworks studied, reflecting the increased stability of reaction intermediates and activated complexes with increasing olefin substitution. A binomial distribution of d0/d3/d6 in unreacted DME upon introduction of equimolar protium- and deuterium-form DME under steady-state reaction conditions of ethylene methylation over H-MFI suggests the presence and facile formation of reactive surface-bound methoxide species and the absence of C–H bond cleavage.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号