首页 | 本学科首页   官方微博 | 高级检索  
     


Gradient algorithms for polygonal approximation of convex contours
Authors:Sara Susca [Author Vitae],Francesco Bullo [Author Vitae],Sonia Martí  nez [Author Vitae]
Affiliation:a Center for Control, Dynamical Systems and Computation, University of California at Santa Barbara, Santa Barbara, CA, 93106-5070, USA
b Mechanical and Aerospace Engineering Department, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA, 92093-0411, USA
Abstract:The subjects of this paper are descent algorithms to optimally approximate a strictly convex contour with a polygon. This classic geometric problem is relevant in interpolation theory and data compression, and has potential applications in robotic sensor networks. We design gradient descent laws for intuitive performance metrics such as the area of the inner, outer, and “outer minus inner” approximating polygons. The algorithms position the polygon vertices based on simple feedback ideas and on limited nearest-neighbor interaction.
Keywords:Convex body approximation   Gradient methods   Interpolation   Polygonal approximation   Motion coordination
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号