首页 | 本学科首页   官方微博 | 高级检索  
     


Surface-modified and conventional nanocapsules as novel formulations for parenteral delivery of halofantrine
Authors:Mosqueira Vanessa Carla Furtado  Legrand Philippe  Barratt Gillian
Affiliation:UMR CNRS 8612, Faculté de Pharmacie, Université Paris-Sud, 92296 Chatenay Malabry, France.
Abstract:The aim of this work was to develop a stable injectable formulation of the antimalarial drug halofantrine (Hf) based on nanocapsules (NC) prepared from biodegradable polymers with Miglyol 810N as the oily core. Poly(D,L-lactide) PLA and its copolymers with poly(ethyleneglycol) (PLA-PEG) were used together with the surfactants poloxamer 188 and lecithin to yield NC with different surface properties. Highly efficient loading of the free base form of Hf was obtained; zeta potential measurements indicated that a part of the associated Hf was at the NC surface, interacting with the lecithin. NC were 150-250 nm in diameter and more stable on storage than nanoemulsions formed from oil and lecithin without polymer. The most stable NC, showing minimal size changes and flocculation, were those with a high density of 20-kDa PEG chains covalently grafted at the surface. Hf release from NC occurred mainly by partition with the external medium. In PBS, even when Tween 80 was added, release was limited to 20% of the total content, whatever the formulation. Addition of serum to the medium allowed complete and rapid release from PLA NC stabilized with adsorbed poloxamer 188, because of the high affinity of Hf for lipoproteins. However, the presence of covalently grafted PEG chains at the surface limited release by providing a hydrophilic steric barrier at the particle surface. A dense coverage with long PEG chains provided the best reduction of release. Such systems could constitute a long-circulating intravenous formulation of Hf for treating severe malaria.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号